Zn2+-induced changes at the root level account for the increased tolerance of acclimated tobacco plants
نویسندگان
چکیده
Evidence suggests that heavy-metal tolerance can be induced in plants following pre-treatment with non-toxic metal concentrations, but the results are still controversial. In the present study, tobacco plants were exposed to increasing Zn2+ concentrations (up to 250 and/or 500 μM ZnSO4) with or without a 1-week acclimation period with 30 μM ZnSO4. Elevated Zn2+ was highly toxic for plants, and after 3 weeks of treatments there was a marked (≥50%) decline in plant growth in non-acclimated plants. Plant acclimation, on the other hand, increased plant dry mass and leaf area up to 1.6-fold compared with non-acclimated ones. In non-acclimated plants, the addition of 250 μM ZnSO4 led to transient membrane depolarization and stomatal closure within 24h from the addition of the stress; by contrast, the acclimation process was associated with an improved stomatal regulation and a superior ability to maintain a negative root membrane potential, with values on average 37% more negative compared with non-acclimated plants. The different response at the plasma-membrane level between acclimated and non-acclimated plants was associated with an enhanced vacuolar Zn2+ sequestration and up to 2-fold higher expression of the tobacco orthologue of the Arabidopsis thaliana MTP1 gene. Thus, the acclimation process elicited specific detoxification mechanisms in roots that enhanced Zn2+ compartmentalization in vacuoles, thereby improving root membrane functionality and stomatal regulation in leaves following elevated Zn2+ stress.
منابع مشابه
Responses of Transgenic Tobacco (Nicotiana plambaginifolia) Over-Expressing P5CS Gene Underin vitroSalt Stress
Salinity is a major limiting factor for plant growth and development. To evaluate the impact of P5CS gene expression under in vitro salt stress condition, transgenic tobacco (Nicotiana plumbaginifolia) carrying P5CS gene and non-transgenic plants were treated with 0, 100, 150, 200 or 250 mM NaCl for 28 days. Proline content, lipid peroxidation and the activity of some antioxidant enzymes after ...
متن کاملاثر پایههای بادمجان، گوجهفرنگی مزرعهای، داتوره، تاجریزی قرمز و تنباکوی ایرانی بر غلظت آهن و کلروفیل در گوجهفرنگی پیوندی
Among the most important quality parameters of irrigation water used for greenhouse crops, alkalinity of water is considered critical due to its impact on pH of soil or growing medium solution. In this study, shoot and root Fe contents and SPAD index were investigated in non-grafted and grafted tomato (greenhouse tomato) plants onto five rootstocks (eggplant, datura, orange nightshade, local Ir...
متن کاملTobacco responds to salt stress by increased activity of antioxidant enzymes . Ali Asghar Hatamnia1,*, Nasser Abbaspour1, Reza Darvishzadeh2, Fatemeh Rahmani1, Reza Heidari 1 1
In order to understand the response of tobacco to salt stress, antioxidant enzyme activities, plant biomass and ion content were analyzed in two oriental tobacco genotypes (Basma 31 and SPT 406). Tobacco plants were exposed to 0, 50, 100, 150 and 200 mM NaCl for 12 days. The fresh and dry weight as well as shoot and root length of Basma 31 were greater than those of SPT 406 under increasing sal...
متن کاملAssessment of salt tolerance in transgenic tobacco (Nicotiana tobacum L.) plants expressing the AUX gene
Transformation of plants using Agrabacterium rhizogenes may affect secondary metabolite production as well as morphological changes. In this study, T-DNA from Ri plasmid in A. rhizogenes carrying pRi15834-PRT35S-GUS was introduced into tobacco leaf segments to initiate development of transformed hairy roots. Plant regeneration from transgenic roots used MS medium, and plants regenerated fro...
متن کاملPhysiological and phytochemical changes induced by seed pretreatment with hydrogen peroxide in Artemisia sieberi under salt stress.
Seeds of medicinal plant Artemisia sieberi were pretreated with H2O2 (0, 10, 50, 90, and 140 µM) and grown in saline condition (0 and 150 mM NaCl) for one month. Phytochemical properties such as antioxidant capacity and also salt tolerance in the plans arising from H2O2 pretreated seeds under salt stress were examined. Results showed a decrease in H2O2 and malondialdehyde concentrations in the ...
متن کامل